The problem with verifying signatures on-chain is that there is only 256-bits big integer data type.
Thus better to reduce number of bigints used by using simpler textbook version of Schnorr validation (message details missed):
{
val message = ...
// Computing challenge
// a of signature in (a, z)
val a = getVar[GroupElement](1).get
val aBytes = a.getEncoded
val holderBytes = holder.getEncoded
val e: Coll[Byte] = blake2b256(aBytes ++ message ++ holderBytes) // strong Fiat-Shamir
val eInt = byteArrayToBigInt(e) // challenge as big integer
// z of signature in (a, z)
val zBytes = getVar[Coll[Byte]](2).get
val z = byteArrayToBigInt(zBytes)
// Signature is valid if g^z = a * x^e
val properSignature = g.exp(z) == a.multiply(holder.exp(eInt))
sigmaProp(properSignature)
}
and then in offchain code we need to be sure that z
big integer fits into 255 bits. The following code is simply iterating over signatures while one which can be provided used on the blockchain
def randBigInt: BigInt = {
val random = new SecureRandom()
val values = new Array[Byte](32)
random.nextBytes(values)
BigInt(values).mod(SecP256K1.q)
}
@tailrec
def sign(msg: Array[Byte], secretKey: BigInt): (GroupElement, BigInt) = {
val g: GroupElement = CryptoConstants.dlogGroup.generator
val pk = g.exp(secretKey.bigInteger)
val r = randBigInt
val a: GroupElement = g.exp(r.bigInteger)
val e = scorex.crypto.hash.Blake2b256(a.getEncoded.toArray ++ msg ++ pk.getEncoded.toArray)
val z = (r + secretKey * BigInt(e)) % CryptoConstants.groupOrder
if(z.bitLength <= 255) {
(a, z)
} else {
sign(msg,secretKey)
}
}
Examples on building transactions can be found in ChainCash repository, e.g. this test https://github.com/kushti/chaincash/blob/master/src/test/scala/kiosk/ChainCashSpec.scala
**Note, that previously insecure variant was published! Fixed now. Thanks dusek for reporting! **